Commuting Pairs in the Centralizers of 2-Regular Matrices

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Commuting Pairs in the Centralizers of 2-regular Matrices

In Mn(k), k an algebraically closed field, we call a matrix l-regular if each eigenspace is at most l-dimensional. We prove that the variety of commuting pairs in the centralizer of a 2-regular matrix is the direct product of various affine spaces and various determinantal varieties Zl,m obtained from matrices over truncated polynomial rings. We prove that these varieties Zl,m are irreducible, ...

متن کامل

On Pairs of Commuting Nilpotent Matrices

Let B be a nilpotent matrix and suppose that its Jordan canonical form is determined by a partition λ. Then it is known that its nilpotent commutator NB is an irreducible variety and that there is a unique partition μ such that the intersection of the orbit of nilpotent matrices corresponding to μ with NB is dense in NB. We prove that map D given by D(λ) = μ is an idempotent map. This answers a...

متن کامل

Commuting Pairs and Triples of Matrices and Related Varieties

In this note, we show that the set of all commuting d-tuples of commuting n × n matrices that are contained is an n-dimensional commutative algebra is a closed set, and therefore, Gerstenhaber’s theorem on commuting pairs of matrices is a consequence of the irreducibility of the variety of commuting pairs. We show that the variety of commuting triples of 4×4 matrices is irreducible. We also stu...

متن کامل

Commuting $pi$-regular rings

R is called commuting regular ring (resp. semigroup) if for each x,y $in$ R there exists a $in$ R such that xy = yxayx. In this paper, we introduce the concept of commuting $pi$-regular rings (resp. semigroups) and study various properties of them.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1999

ISSN: 0021-8693

DOI: 10.1006/jabr.1998.7703